

Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática

Plano de ensino Semestre 2020-1

	I. Identificação	da disciplina		
$C\'odigo$	Nome da disciplina	Horas-aula semanais Horas-au		Horas-aula semestrais
MTM5512	Geometria Analítica	Teóricas: 4	Práticas: 0	72

II. Professor(es) ministrante(s)

Alda Davana Mattos Mortari.

III. Pré-requisito(s)

Não há.

IV. Curso(s) para o(s) qual(is) a disciplina é oferecida

Ciência e Tecnologia de Alimentos, Ciências da Computação, Engenharia de Alimentos, Engenharia de Aquicultura, Engenharia de Controle e Automação, Física – Bacharelado, Física – Licenciatura (noturno), Geologia, Metereologia, Oceanografia, Química – Bacharelado, Química – Licenciatura. Este plano de ensino refere-se apenas às turmas dos cursos Geologia (01336) e Engenharia de Aquicultura (02234).

V. Ementa

Matrizes. Determinantes. Sistemas lineares. Álgebra vetorial. Estudo da reta e do plano. Curvas planas. Superfícies.

VI. Objetivos

O aluno no final do semestre deverá ser capaz de:

- Operar com matrizes, calcular a inversa de uma matriz, discutir e resolver sistemas lineares por escalonamento.
- Operar com vetores, calcular os produtos escalar, vetorial e misto, bem como utilizar suas interpretações geométricas.
- Aplicar as noções de matrizes e vetores para resolver problemas com retas e planos.
- Identificar uma curva plana, reconhecer seus elementos e representá-la graficamente.

VII. Conteúdo programático

Unidade 1. Matrizes.

- 1.1. Matriz. Definição, notação, igualdade, tipos.
- 1.2. Operações com matrizes: adição, multiplicação por escalar, multiplicação de matrizes. Propriedades.
- 1.3. Matriz na forma escalonada, posto de uma matriz na forma escalonada.
- 1.4. Operações elementares por linhas, posto de uma matriz.
- 1.5. Determinantes: propriedades e cálculo por escalonamento.
- 1.6. Matriz inversa.
- 1.7. Determinação da matriz inversa pelo processo de Jordan.
- 1.8. Classificação e resolução de sistemas lineares por escalonamento.

Unidade 2. Álgebra vetorial.

- 2.1. Vetores, definição.
- 2.2. Operações com vetores.
- 2.2.1. Adição, representação geométrica e propriedades.
- 2.2.2. Multiplicação por um escalar, representação geométrica e propriedades.
- 2.2.3. Subtração e representação geométrica.
- 2.2.4. Combinação linear de vetores, dependência linear de vetores.
- 2.2.5. Produto escalar, propriedades e interpretação geométrica.
- 2.2.6. Norma de um vetor.
- 2.2.7. Ângulo entre vetores, paralelismo e ortogonalidade de vetores.
- 2.2.8. Produto vetorial, propriedades e interpretação geométrica.
- 2.2.9. Produto misto, propriedades e interpretação geométrica.

Unidade 3. Estudo da reta e do plano no espaço.

- 3.1. Sistemas de coordenadas cartesianas.
- 3.2. Equação vetorial da reta.
- 3.3. Equações paramétricas da reta.
- 3.4. Equações simétricas da reta.
- 3.5. Condição de paralelismo entre retas.
- 3.6. Condição de ortogonalidade entre retas.
- 3.7. Condição de coplanaridade entre retas.
- 3.8. Ângulo entre duas retas.
- 3.9. Intersecção de duas retas.
- 3.10. Equação vetorial do plano.
- 3.11. Equações paramétricas do plano.
- 3.12. Equação geral do plano.
- 3.13. Vetor normal a um plano.
- 3.14. Condição de paralelismo entre dois planos.
- 3.15. Condição de ortogonalidade entre dois planos.
- 3.16. Intersecção de planos.
- 3.17. Ângulo entre planos.
- 3.18. Ângulo entre reta e plano.
- 3.19. Condição de paralelismo entre reta e plano.
- 3.20. Condição de ortogonalidade entre reta e plano.
- 3.21. Intersecção de reta e plano.
- 3.22. Distâncias entre dois pontos, de um ponto a uma reta, entre duas retas, de um ponto a um plano, entre dois planos, de uma reta a um plano.

Unidade 4. Cônicas e superfícies quádricas e cilíndricas.

- 4.1. Cônicas.
- 4.1.1. Circunferência.
- 4.1.2. Parábola.
- 4.1.3. Elipse.
- 4.1.4. Hipérbole.
- 4.2. Superfícies quádricas.
- 4.2.1. Superfície, definição.
- 4.2.2. Esfera.
- 4.2.3. Elipsoide.
- 4.2.4. Hiperboloide de uma e duas folhas.
- 4.2.5. Paraboloide elíptico e hiperbólico.
- 4.2.6. Superfície cônica.
- 4.3. Superfícies cilíndricas.

VIII. Metodologia de ensino e desenvolvimento do programa

O curso será organizado e disponibilizado aos alunos através da plataforma Moodle. Haverá uma videoconferência no início das atividades remotas e o restante do conteúdo da disciplina será fracionado semanalmente com seguintes atividades previstas:

- Videoaulas sobre o conteúdo da semana, separadas por tópicos (aproximadamente uma hora-aula por semana).
- Uma avaliação semanal (aproximadamente meia hora-aula por semana).
- Listas de exercícios para praticar o conteúdo dos vídeos (restante da carga horária da semana).
- O aluno terá à disposição um fórum semanal para postar suas dúvidas.
- Além dos conteúdos acima, o aluno terá à disposição materiais complementares (outras videoaulas, livros e textos)
 para aprofundar seus conhecimentos. Também haverá monitores à disposição dos alunos.

Se, durante o semestre, o professor encontrar alguma forma mais eficiente de organizar a disciplina, em comum acordo com os alunos, poderá alterar a metodologia de ensino, desde que esteja em consonância com as resoluções vigentes.

IX. Metodologia de avaliação

O aluno será avaliado semanalmente, a partir da segunda semana de ensino remoto, através de avaliações em formato assíncrono, disponibilizada na plataforma Moodle. A média final será a média aritmética das avaliações semanais, excluindo-se as três menores notas. Será considerado aprovado o aluno que tiver, além de frequência suficiente, média maior ou igual a 6,0. A frequência será controlada através da plataforma Moodle, ficando a cargo do próprio aluno confirmar sua presença (uma confirmação semanal, podendo ser feita em qualquer dia e horário da semana). Se, durante o semestre, o professor encontrar alguma forma mais eficiente de organizar a disciplina, em comum acordo com os alunos, poderá alterar a forma de avaliação, desde que esteja em consonância com as resoluções vigentes.

X. Avaliação final

De acordo com o parágrafo 2º do artigo 70 da Resolução 17/Cun/97, o aluno com frequência suficiente e média das avaliações do semestre de 3,0 a 5,5 terá direito a uma nova avaliação, no final do semestre, abordando todo o conteúdo programático. A nota final desse aluno será calculada através da média aritmética entre a média das avaliações anteriores e a nota da nova avaliação.

XI. Cronograma teórico

As duas primeiras semanas de aula foram dadas no formato presencial, no mês de março. As próximas 16 semanas de aula, estão assim divididas: na semana 3, será feita uma revisão do conteúdo das semanas 1 e 2; nas semanas 4 a 17, o restante do conteúdo da disciplina será dividido; a semana 18 será para aplicação da prova de recuperação àqueles que necessitarem. Se, durante o semestre, o professor encontrar alguma forma mais eficiente de organizar a disciplina, em comum acordo com os alunos, poderá alterar o cronograma, desde que esteja em consonância com as resoluções vigentes.

XII. Cronograma prático

Não se aplica.

XIII. Bibliografia básica

- 1. Santos, R. J. Matrizes, Vetores e Geometria Analítica, Imprensa Universitária da UFMG, Belo Horizonte, edição de julho de 2013. Disponível em https://regijs.github.io/ (acessado em 16/08/2020).
- 2. Bezerra, L. H., Costa e Silva, I. Geometria Analítica, 2ª edição, UFSC, Florianópolis, 2010. Disponível em https://mtmgrad.paginas.ufsc.br/files/2014/04/Geometria-Anal%C3%ADtica.pdf (acessado em 16/08/2020).
- 3. Andrade, D., de Lacerda, J. F. Geometria Analítica, 2ª edição, UFSC, Florianópolis, 2010. Disponível em https://mtmgrad.paginas.ufsc.br/files/2020/08/Geometria-Analitica-Livro-Didatico.pdf (acessado em 16/08/2020).

XIV. Bibliografia complementar

- 1. Boulos, P., Camargo, I. Geometria Analítica, um tratamento vetorial, 3ª edição, São Paulo.
- 2. Kuhlkamp, N. Matrizes e Sistemas de Equações Lineares, a 3ª edição revisada, Editora da UFSC, Florianópolis, 2011
- 3. Lima, E. L. Geometria analítica e álgebra linear. Rio de Janeiro: IMPA, 2001.
- 4. Steinbruch, A., Winterle, P. Geometria Analítica, 2ª edição, Pearson Makron Books, São Paulo.

Florianópolis, 16 de agosto de 2020.
 rofessora Alda Davana Mattos Mortari